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ABSTRACT 

An investigation of the influence of the choice of the boundary conditions on the shape of the band 
profile obtained by simulation of the elution process using the classical model of semi-ideal chromatogra- 
phy is presented. As the boundary condition represents the perturbation created at the column inlet, it 
influences the response of the column. It is shown that the peak area is conservative only if certain 
conditions are satisfied. Among other approximations, the Houghton equation does not fulfil these re- 
quirements. Contour plots are used to illustrate the band migration process and the properties of these 
bands in non-linear chromatography. 

INTRODUCTION 

The choice of the boundary conditions for the integration of the partial 
differential equations which constitute the dynamic model of chromatography is 
important. These conditions must represent correctly the physical phenomena 
involved in the introduction of the sample. The boundary condition at the column inlet 
translates into mathematical terms the injection profile of the sample. At the column 
outlet, the boundary condition indicates whether and how reflection of the propa- 
gating wave takes place. 

In this paper, we present an analysis of the influence of the boundary conditions 
on the zeroth-order moment of the elution of the band, i.e., on its area. A discussion of 
the travelling character of the band during the elution process inside the column is also 
included. The results obtained by a series of computer simulations and a comparison 
with various experimental results are also described. 

As the boundary condition represents the perturbation created at the column 
inlet by the injection of the feed, different boundary conditions must result in different 
band profiles. The mathematical and physical aspects of the problem are investigated 
and compared. 
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MASS OF A COMPOUND AND THE ZEROTH MOMENT OF ITS BAND 

Mass balance equation 
The mass balance for a compound in a slice of a chromatographic column (slice 

thickness, dx), can be derived from the principle of continuity [ 11, which is written as 

aP dt + div f = 0 

where p is the total concentration of the compound in the slice considered: 

p=C+Fq (2) 

C is the concentration in the mobile phase, q the concentration in the stationary phase 
and F the hase ratio, i.e., the ratio (l-&)/e, where E is the porosity of the column 
packing. 3 is given by 

ac f= ‘;tc-Dvc+uc-D- 
ax 

Further discussion of the properties of this equation requires a relationship between 
the mobile and stationary phase concentrations of the compound studied. It is most 
convenient here to continue the discussion within the framework of the semi- 
equilibrium models. The ideal model assumes constant equilibrium between the two 
phases, which is tantamount to assuming that the column has an infinite efficiency. In 
practice, it has been shown that the results obtained with the ideal model are an 
excellent first approximation of the chromatograms actually observed [2]. It has been 
shown also, both theoretically [3-51 and experimentally [6,7], that excellent band 
profile predictions are obtained with a mass balance equation which assumes constant 
equilibrium between the two phases and corrects for the finite efficiency of the real 
column by using a proper value of the coefficient of axial dispersion. This apparent 
diffusion coefficient, D,, is equal to Hu/2, where H is the height equivalent to 
a theoretical plate of the real column and u the velocity of the mobile phase. 

This semi-equilibrium model of chromatography permits an accurate descrip- 
tion of the behavior of a band in a chromatographic system, its migration, broadening 
and change in profile, as long as the mass transfer kinetics are not very slow [2,8,9]. In 
this case, we have the following equation system: 

ac Bq 
ar+Fz+~g=Da$ - 

with 
4=AC) (5) 

where f(C) is the equilibrium isotherm of the compound studied between the two 
phases. The combination of eqns. 4 and 5 is the classical mass balance equation of the 
semi-ideal model of chromatography. 



DYNAMIC CHROMATOGRAPHY MODEL: BOUNDARY CONDITIONS 3 

Mass and zero&-order moment 
The mass, m, of substance contained in the column can be derived from eqn. 

2 and is given by 

rn=/pdv=Sj:(C+Fq)dr 

where v is the volume of mobile phase, L is the column length and S the cross-sectional 
area of the column fraction accessible to the solute, i.e., the product of the geometrical 
volume and the total column porosity. The mass flow across a section perpendicular to 
the column axis is 

Integrating eqn. 1 or 4 along the column gives 

f = S(d - D$)* - gut - DagL (8) 

which is exactly the integrated mass balance for the whole column. Since at the end of 
an experiment the column is usually left under the same conditions as it was at the 
beginning, we have m(t = co) - m(t = 0) = 0, which can be written as 

Equation 9 indicates that, if we wait long enough, the whole sample will be washed out 
of the column. 

In the particular case when the mobile phase velocity is constant and D, = 0, the 
mass of compound injected is 

co 
SU 

s 
Cdt 1 x=O (10) 

0 

and the mass of the same compound eluted from the column is 
m 

su 
s 

Cdt 1 xsL 

0 

In this case, the area of the injected profile, the area of the profile C(t) recorded at any 
position along the column and the area of the elution profile are all equal and 
proportional to the sample mass. In other words, when the diffusion coefficient is 0 and 
u is constant, the zeroth moment is conserved and is proportional to the sample mass. 
In liquid chromatography, the molecular diffusion coefficient, D,, is of the order of 
1. lo-’ cm2/s, but the apparent dispersion coefficient is larger, typically of the order of 
1. 10m3 cm2/s and u is kept constant, so the condition stated above applies, and the 
previous analysis holds for the real world of liquid chromatography. 

When D, is significantly different from 0, however, a more complicated analysis 
of the implications of the classical boundary and initial conditions is required. 
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VARIATION OF PEAK AREA WITH COLUMN LENGTH 

Eqn. 4 is a second-order partial differential equation. The solution of a well 
posed problem involving such an equation requires an initial and a boundary 
condition. In fact, the main difficulty in the use of a dispersion model of chromato- 
graphy is in choosing a proper set of initial and boundary conditions which describe 
properly the actual physical problem. Three types of boundary conditions are used 
most often [IO]: 

First type: the injection profile is given by the equation 

C(x = 0, t) = $1(t) 

Second type: the derivative of the injection profile is given by 

(12) 

ac 
ax x=o 

= @z(t) 

Third type: the following condition applies: 

aC(x = 0, t) + p g = = Y,(t) 

x 0 

(13) 

(14) 

From the uniqueness theorem, one knows that any one of these conditons can be used 
to determine a solution of the eqn. 4, and that the solution obtained is unique. If one 
attempts to use two or more conditions simultaneously, the problem is overdetermined 
and has no solution. 

In the case of chromatography modeling, the following initial conditions are 
most often preferred: 

C(x, t = 0) = q(x, t = 0) = 0 

and the boundary conditions are of the first or the third class. 

(15) 

As pointed out by Danckwerts [lo], a boundary condition of the third class must 
be used when the diffusion coefficient, D,, is not zero, and the column length is finite. 
A boundary condition of the first class may be used only if the column length is long 
enough so that the condition: 4D,/Lu 6 1 is satisfied. Kreft and Zuber [I I] introduced 
two definitions of the concentration (the resident and the flux concentrations), both at 
injection and detection, to specify the various initial and boundary conditions. Jlinsson 
[12] discussed several assumptions and compared the solutions of the mass balance 
equation in linear chromatography for two types of first class boundary conditions, an 
infinitely sharp pulse in the time domain and an infinitely sharp pulse in the space (i.e., 
column) domain. 

In the following, we derive the value of the zeroth-order moment of the elution 
profile obtained as solution of eqn. 4 when using a boundary condition of the third or 
the first class, and we discuss the meaning of the result obtained. 
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General properties of the peak area 
Integrating eqn. 4 with respect to time, from the beginning of the experiment 

(i.e., between t = 0 and t = co), gives 

or 

cc + &I) I cc - (C + Fq)((j + u% = &$$9 

where 

co 

A(x) = s C(x, t)dt 
0 

(16) 

(17) 

(18) 

A(x) is the local peak area. Our problem now is to show that it is independent of X, 
under certain conditions. 

Since 

(C + Fq) = 0 when t = cc 

and 

(C + Fq) = gi(x) when t = 0 

where gi(X) is the initial condition. Eqn. 17 becomes 

-gi(X) + 24 2 = Da $ 

(19) 

(20) 

(21) 

gi(X) represents the initial distribution of the compound in the column, before the 
injection is made. If g&) = 0, the condition is called homogenized. This is the 
condition which applies in almost all practical aplications of chromatography. 

The solution of eqn. 21 is 

4-4 = GWexpWOJ + Cd4 (22) 

Using the classical method of the variation of constant, we obtain 

dCd.4 u gi(X) 
7 D exp(ux/D,) = - D 

a 
(23) 



and: 

dCi(x) 
x exp(ux/D,) + -$2(x) = 0 (24) 

The solutions of eqns. 23 and 24 are 

C,(x) = - i 
P 

gi(x)exp( - ux/D,)dx + Cl.0 
0 

and 

C,(X) = k gi(xW + CZ,O 
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(25) 

(26) 

Combining eqns. 22, 25 and 26 gives 

A(x) = C1,oexp(--x/D,) + CZ,~ - i exp(ux/D,) 
s 

gi(x) exp( - ux/Da)dx + 
0 

+a 

s 

gi(xFx (27) 
0 

Eqn. 27 is the fundamental result in this paper. It represents the variation of the peak 
area during its migration along the column. It shows that the peak area depends on the 
boundary conditions, through the constants C1,o and C2,0, and on the initial 

condition, through gi(x). In fact, S ji gi(x)dx = m(t = 0). 

Peak area under third class boundary condition 
The boundary conditions used in this case are formulated as follows, at the 

column inlet: 

UC-DE=& x=0 
R ax k' 

and at the column outlet: 

(28) 

dc=Ox_L 
ax ’ - (29) 

where C, is a constant concentration. This is the Danckwerts boundary condition [lo]. 
Integrating eqn. 28 between the beginning and the end of the experiment gives 

D dA(x) 
= dx X=o 

= z&4(0) - #AL (30) 
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where Ak = JICkdt. Integrating the other boundary condition (eqn. 29) gives 

dA 

dx r=L = 
0 (31) 

Combining eqns. 27, 28, 30 and 31 permits the calculation of the constants C1,e and 
Cz,O in eqns. 25 and 26: 

C 
1 

l,o = ; 
s 

gi(xkd-4~~)d~ 
0 

(32) 

and 

c 2,0 - - -h (33) 

Finally, equation 27 becomes: 

A(X) = 1, exp (a/Da) 
s X 

gi(x)exp( - ux/DJdx + i 
s 

gi(x)dx + Ak (34) 
0 

From eqn. 34, we can derive the value of the function A at both ends of the column: 

/f(O) = Ak + ; 
s 

gr(x)exp( - =l&)dx (35) 
0 

and 

A(L) = Ak + ; 
P 

gi(x)dx 
0 

Accordingly, 

A(L)- A(0) = i 
s 

gi(x)[l - exp( - ux/DJ]dx (37) 
0 

Obviously, when gi(X) = 0, which is true in chromatography, we have A(L) = A(0). 
This demonstrates that the zeroth-order moment of the band remains constant during 
its migration throughout the column if the initial condition is homogeneous (i.e., if 
dthere is nothing in the column before the injection is made). 

Peak area under first class boundary condition 
The boundary conditions are now written as follows, at the column inlet: 

c(x,t) = $(t), x = 0 (38) 
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and at the column outlet, for an infinitely long column: 

c(x,t) is finite when x-co (39) 

From eqn. 38, we have 

A(0) = s m WW 
0 

(40) 

Combining eqns. 27 and 40 gives (see also eqn. 22): 

CL0 + c2,o = 

f 

m d4W (41) 
0 

From eqns. 27 and 39, it results that, in order to have C(x,t) and hence A(x) finite, we 
must have 

c -0 l,o - (42) 

and 

C 2,0 = 

s 

O” vXW 
0 

(43) 

Combination of eqns. 27, 42 and 43 gives 

m 

A(x) = s 0 

$(t)dt - k exp(ux/D,) gi(x)exp( -ux/D,)dx + A 
s 

gi(x)dx (44) 
0 

From eqn. 44, we derive the value of A at both ends of the column: 

A(L) = t+b(t)dt - i exp(uL/D,) o gi(x)exp(-tix/DJdx + i 
s s 

g,(x)dx (45) 
0 

and 

A(0) = 
s 

m Wdt 
0 

and, finally, 

(46) 

A(L) - A(0) = - A exp(uL/D,) 
s 

gi(x)exp( - ux/D,)dx + d gi(x)dx (47) 
0 s 0 
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Eqn. 47 is identical with eqn. 37. We have 

A(L) = A(O), if gi(x) = 0 

In chromatography, the zeroth-order moment remains constant all along the column if 
the initial condition is homogeneous. 

Peak area in the case of the Houghton approximate equation 
Houghton [ 131 obtained an analytical solution of the mass balance equation of 

chromatography (eqn. 4) by making two assumptions. First, he assumed a parabolic 
isotherm, i.e., replaced the isotherm by its three-term expansion around the origin (see 
eqn. 53). Second, he used the Colt+Hopf transform [l] in order to replace the mass 
balance equation (eqn. 4) by a Burger equation, for which an analytical solution can be 
obtained [13-141. This requires, however, another assumption, that the factor (1 
+ K)-’ (see eqn. 50) in the mass balance equation can be replaced by 1. As 
a consequence of these two assumptions, the analytical solution obtained has physical 
significance only for small concentrations. Potentially more troublesome, however, is 
the fact that the Burger equation (i.e., the equation really solved) has lost the 
conservation property of eqn. 4, because of the simplification made. Since the 
non-conservation behavior of the Houghton equation has been reported [17,18], it is 
interesting to apply the same analysis as above and to investigate the extent of the 
variation of the zeroth-order moment of the band profile during the band migration. 
The equation derived by Houghton [13] may be written as 

with 

rJ= I4 
1.: 

E. = 
& 

(48) 

(4% 

(50) 

(51) 

(52) 
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where I/E = Fand K1 and K2 are the coefficients of the parabolic adsorption isotherm, 
which is used for the investigation of the onset of column overload behavior. This 
isotherm is written as 

q = K. + KIC + K2C2 (53) 

where K,, is constant and usually equal to 0. The initial and boundary conditions 
assumed by Houghton [13] are 

C&4x) = g&> = CO if lx I < LOP 

C(O,x) = 0 if 1 x 1 > Lo/2 (54) 

and 

q(OJ) = gz,i(x) = KlCo + KzG if 1x1 I < LO/~ 

q(O,X) = gz,i(X) = 0 if IX] > Lo/2 (55) 

In eqn. 48, we have X/at = dC/dt) rzconstant. Further, we know that 

(56) 

Combining eqns. 48, 56 and 57 gives 

(57) 

(58) 

Eqn. 58 is the Houghton approximate equation in the (x, t) space coordinate. Hence 
the differential of the mass density represented by the Houghton equation can be 
written as 

ap = 

at 

Combining eqns. 58 and 59 gives 

ap 
u E + D, $ + A2uC2 g + AD,C $ at=- ax 

(59) 

(60) 
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It is obvious that the solution of the Houghton equation is different from that of the 
mass balance equation (eqn. 1). The difference is due to the terms /zzuCz X/dx and 
ADC d2C/Bx2. Since MY 4 1, A2C2 is still smaller and the term in A2C2 can be ignored. 

Integrating eqn. 60 with respect to x and t, multiplying the two sides by the 
cross-sectional area, S, and ignoring the term in A2C2, we obtain 

From partial integration of eqn. 61, we obtain 

We combine eqns. 61 and 62 and consider that m(co)-m(O) = 0. Since in the case of 
the Houghton equation the injection is very narrow, Lo/2 is small and the initial 
condition is still a Dirac 6 pulse. Therefore, we may integrate from x = Lo/2 and the 
boundary condition is still homogeneous. Thus, we have 

For the finite column, the Danckwerts condition (eqns. 28 and 29) can be considered. 
This gives 

.X=0 
(1 - AC,)dt-A [ [ (Ty dxdt (64) 

Since we have AC 4 1, we can write: 

A(L) - A(O) = -Da [~~(~~dxd~ - Dal(g)odf (65) 

Usually, X/ax is large in non-linear chromatography, at least in some concentration 
range, e.g., on the front of elution bands when the isotherm is Langmuirian. Thus, we 
may expect the absolute value of the term 3, Jk(aC/ax)2dx to be larger than that of 
(K/ax),,,. Therefore, the sign of the difference A(L) -A(O) is determined by the sign 
of a.. 

When the isotherm is convex, such as with a Langmuir isotherm, A < 0 and the 
eluted band has a lower area than the injected band. In fact, the area of the eluted band 
decreases with increasing column length [S]. The opposite is true for a concave or an 
S-shaped isotherm. This loss or gain of zeroth moment, which should not be mistaken 
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for an apparent loss or gain in sample mass, occurs because the analytical solution of 
eqn. 48 is not a solution of eqn. 4, owing to the simplification introduced in the 
derivation of eqn. 48. 

When /z = 0, we have linear chromatography and eqn. 58 is identical with eqn. 4. 
Comparison between eqn. 9 and eqns. 37 and 47 shows that when g&x) = 0, 

and, from eqn. 63, we have always A(L) = A(0). 

6 8 10 12 l4 16 18 

TIME 
1 

Fig. 1. Injection profiles corresponding to two different boundary conditions. 1 = plug (first kind) 
condition; 2 = Danckwerts (third type) conditions. Time in seconds, concentrations in m&f. 
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INFLUENCE OF BOUNDARY CONDITIONS ON BAND MIGRATION 

The previous discussion has shown that the peak area (i.e., the zeroth-order 
moment) is not necessarily a quantity conserved by eqn. 4, contrary to general belief. 
Even for rigorous solutions of eqn. 4, the zeroth moment may change and this change 
still remains consistent with the mass conservation law. Hence the peak area does not 
always represent the mass of the compound analyzed. The band area is related to the 
mass of compound injected, however, and under certain conditions it remains constant 
during the migration of the band. 

The choice of the boundary conditions has an effect on the retention time and the 
profile of the eluted band. Fig. 1 shows the injection profiles corresponding to the pulse 
(first type) and the Danckwerts (third type) boundary conditions. In the latter 
instance, the boundary condition includes a diffusion term (see eqn. 28), and Fig. 
1 shows the plot of C(t) at the column inlet which corresponds to that condition, The 
differences in the front and tail of the injection profiles are significant and explain why 
different profiles may be recorded for the injection of the same amount of sample using 
one boundary condition or the other, if the width of the injection pulse profile and 
especially the rise and decay times of the Danckwerts boundary condition are 
significant compared with the retention time. The Danckwerts condition is certainly 
much more realistic than the pulse condition. 

To illustrate the influence of the boundary conditions, we determined the 
contour plots of the band migration, using a computer program previously developed 
to calculate numerical solutions of eqn. 4 1191 and suitably modified to include the 
boundary conditions required. These contour plots are the isoconcentration contours 
projected on a (t, X) plane. A section of these plots by a vertical plane at t = constant 
gives the concentration profile of the band inside the column at that given time. 
A section of the same contour plot by a vertical plane at x = constant gives the elution 
profile through the column section at that abscissa. The contour plot gives the trail of 
a concentration wavelet in the column, from its entrance to its exit. 

Fig. 2 shows the contour plot for a very small diffusion coefficient and a linear 
isotherm. Then the wavelet moves linearly. The slope of the trajectories of the different 
wavelets are the same, as they have all the same velocity. Figs. 3-5 show the contours in 
the case of a non-linear isotherm. Fig. 3 corresponds to a plug injection (first type of 
boundary conditions), and Figs. 4 and 5 correspond to the same Dankwerts boundary 
condition and to different values of the axial dispersion coefficient in the column. As 
the isotherm is not linear, the velocity of a wavelet, i.e., the velocity associated with 
a concentration [ZO], depends on this concentration and the trails are not linear. The 
parallel lines in the upper part of the figures correspond to the migration of the shock 
layer of the band [20]. The lines which leave the time axis beyond ca. 1 min and diverge 
correspond to the band tail, i.e., the non-sharpening part of the profile. In each 
instance, the inner curvilinear triangle, at the bottom left of the figures, corresponds to 
the decay of the injection profile plateau. Beyond that first profile, the apex of each 
curvilinear triangle corresponds to a band maximum. These apices mark the trajectory 
of the band maximum and its decay. 

The location of the countour lines in Figs. 3 and 4, which differ only by the 
boundary condition, are slightly different and the overall effect is small. The influence 
of the axial dispersion on the contour map is illustrated by a comparison between Figs. 
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Fig. 2. Concentration contour plots corresponding to a linear isotherm. The moire effect around the origin is 
a graph artefact. Note the parallel lines corresponding to isokinetic concentration trajectories. Pulse 
injection (see Fig. 1). Apparent dispersion coefficient, D, = 0.0012 cm’js. 

E 
d 

7 

/ 

/ 

/ 

/ 

, 

I.05 Ok l.b3 1:52 2:01 2:so 2199 3:4a 3:97 4149 

TIME 

Pig. 3. Concentration contour plots corresponding to a non-linear isotherm and to a first type inlet 
boundary condition (see Fig. 1). Same conditions as for Fig. 2. 
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z 
d 

0.05 0.34 1.03 1.52 2.01 2.50 2.9s 3.48 3.87 4.44 

TIME 

Fig. 4. Concentration contour plots corresponding to a non-linear isotherm and to a third type 
(Danckwerts) inlet boundary Eondition (see Fig. 1). Same conditions as for Fig. 2. 

TIME 

Fig. 5. Concentration contour plots corresponding to a non-linear isotherm and to a third type 
(Danckwerts) inlet boundary condition. Same conditions as for Fig. 2, except 0. = 0.012 cm’/s. 
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4 and 5. In the latter figure (axial dispersion ten times as large as for Fig. 4), the 
self-sharpening effect on the band front is much less acute than in Fig. 4. The shock 
layer is much thicker. 

Fig. 6 shows the elution profiles corresponding to the two boundary conditions 
at the end of a 5-cm long column (see injection profile in Fig. 1). The effect is 
important. The retention time is longer and the profile is wider, shorter and tails longer 
with the Danckwerts boundary condition than with the pulse injection, Such an effect 
should be expected on comparing the two profiles in Fig. 1. This phenomenon arises 
because of the influence of diffusion on the injection profile. In practice, the 
Danckwerts injection is a more realistic model than the plug injection. 

:_ 

;. 
5 

3_ 
5 

3 
? >_, 

70 S'O lie 150 rio 2io 

Fig. 6. Effect of the nature of the inlet boundary condition on the retention time and the shape of the elution 
profile. Both profiles were generated with h = 0.01 cm, z = 0.01 s, L = 5 cm. See injection profiles in Fig. 1. 
I = Plug injection; 2 = Danckwerts condition. 
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0 SO 75 100 125 l50 l75 200 225 i 

TIME 

Fig. 7. Same as Fig. 2, except infinite outlet boundary condition. 

0 25 50 75 100 l2s 150 175 200 225 : 

TIME 

Fig. 8. Same as Fig. 2, except finite outlet boundary condition. 
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Finally, Figs. 7 and 8 compare the effects of the outlet boundary conditions. In 
Fig. 7 the boundary condition assumes an infinite column length. In Fig. 8, the column 
length is finite, i.e., dC/dxIL = 0. In the latter instance, the contour lines are bent 
upwards near the column exit. The choice of‘a correct outlet boundary condition 
appears to be relevant when simulating the behavior of chromatographic columns and 
looking for the determination of the optimum column length for maximum production 
under some constraint of product purity [21]. 
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